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1. Overview 
 
We describe here the radiation code used in our general circulation model (GCM). This 
code is a stand-alone version and it calculates instantaneous profiles of fluxes and heating 
rates given a set of basic input parameters (see below). With some modification (not 
included here) it could also be adopted for time marching calculations such as marching 
through a diurnal cycle. 
 
The code is based on the two-stream solution to the radiative transfer equation for plane 
parallel atmospheres. Since computational speed is important for GCMs, we followed the 
approach of Toon et al. (1989) and develop a tridiagonal matrix solution for multiple 
layers in a vertically inhomogeneous plane parallel atmosphere that is valid for all types 
of two-stream equations. However, in the infrared Toon et al. show that only the 
hemispheric mean approximation gives physically realistic results (e.g., emissivities < 1) 
so we use this exclusively in this wavelength regime. In the visible, Eddington or 
quadrature assumptions are provided and are user selectable.  
 
The model accounts for gaseous absorption by CO2 and water vapor, molecular Rayleigh 
scattering, and scattering and absorption due to water ice and dust particles. CO2 and 
water vapor opacities are derived from correlated-k distributions calculated off-line using 
a line-by-line code.  
 
2. Two Stream Equations 
 
In this section, we provide the user a thorough derivation of the 2-stream solutions we use 
in our code.  
 
The general equation of radiative transfer in a plane parallel atmosphere is 
 

µ
dIν (τ,µ,φ)

dτ
= Iν (τ,µ ,φ ) −

ω o
4π

Pν
−1

+1

∫
0

2π

∫ (µ, µ' ;φ ,φ ' )Iν (τ ,µ,φ)dµ
' dφ ' − Sν (τ ,µ,φ)                                (1) 

 
where µ is the cosine of the zenith angle (measured from the local vertical), Iν(τ,µ,φ) is 
the radiation intensity at frequency ν, τ is the optical depth, φ is the azimuth angle, ωo is 
the single scattering albedo, Pν is the scattering phase function, and Sν is a source term.  
 
Note that the optical depth is defined with respect to the local vertical and increases 
downward from the top of the atmosphere, i.e., for an absorbing atmosphere 
 

                                                                                                                       

(2) 
 
where ρa is the absorber density and ka is a mass absorption coefficient. 
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The first term on the right hand side of equation (1) represents absorption along the path. 
The second term represents scattering of radiation from angle µ’,φ’ into angle µ,φ. The 
phase function determines the angular distribution of scattered radiation. The integrals 
account for all possible scattering events within a 4π solid angle. The last term depends 
on which part of the spectrum solutions are sought. For visible radiation, 
 
Sν =

ω o
4
Fs (ν)P(µ, −µo ,φ, φo ) exp(−

τ
µo
)                                                                                     (3) 

 
where µo is the cosine of the solar zenith angle. In the infrared, 
 

€ 

Sν = (1−ωo)Bν (T)                                                                                                             (4) 
 
where Bν(T) is the Planck function at temperature T. Equation (3) represents that part of 
the  extinguished direct solar beam coming from angle –µo that is singly scattered into the 
direction µ,φ. Equation (4) represents the contribution due to thermal emission. 
 
Our main interest is obtaining reasonably accurate heating rates. We do not need to know 
the angular dependence of the radiation field. Hence, we seek methods that will give us 
the upward and downward fluxes (from which heating rates can be derived). Two-stream 
solutions to equation (1) give us such fluxes. They reduce the angular dependence of the 
intensity field to two streams: up and down. Generalized radiative transfer equations for 
these up and down streams can be obtained by integrating equation (1) separately over 
the upper (µ=0 to 1) and lower hemispheres (µ=0 to -1), and for all azimuth angles (φ=0 
to 2π). Noting that the up and down fluxes are defined by 
 

€ 

F + = Iνµdµ
0

1

∫
0

2π

∫ dφ                                                                                                              

(5) 
 
and 
 

€ 

F − = Iνµdµ
0

−1

∫
0

2π

∫ dφ                                                                                                              

(6) 
 
respectively, equation (1) becomes 
 
 

€ 

dF +

dτ
= Iν dµdφ

0

1

∫ −
0

2π

∫ [ωo

4π
Pν (µ,µ

';φ,φ '
−1

1

∫
0

2π

∫ )Iν dµ'dφ ' ]
0

1

∫
0

2π

∫ dµdφ − Sv
0

1

∫
0

2π

∫ dµdφ                  (7)                       

 
for the upward flux F+ and 
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€ 

dF −

dτ
= + Iν dµdφ

0

−1

∫ −
0

2π

∫ [ωo

4π
Pν (µ,µ

' ;φ,φ '
−1

1

∫
0

2π

∫ )Iν dµ'dφ ' ]
0

−1

∫
0

2π

∫ dµdφ − Sv
0

−1

∫
0

2π

∫ dµdφ                (8)                  

 
for the downward flux F−. 
 
Solutions to equation (7) and (8) depend on the assumptions made about the angular 
dependence of the phase function and intensity field. Here, we give sample solutions for 
the two types of approximations we commonly use: the Eddington approximation for 
solar radiation, and the hemispheric mean approximation for infrared radiation. With 
these approximations, equation (7) and (8) will be shown to reduce to two first-order 
coupled linear differential equations that can be solved using standard methods. Other 
approximations lead to a similar set of equations but with different coefficients. 
 
The Eddington Approximation 
 
In the Eddington approximation, the intensity is expressed as 
 

€ 

I = Io + µI1                                                                                                                         (9) 
 
where I0 and I1 are constants (we now drop the frequency notation). The phase function is 
approximated by a second order Legendre polynomial and takes the form  
 
P(Θ) = 1+ω1 cos(Θ)                                                                                                             (10) 
 
where Θ is the scattering angle (i.e., the angle between µ,φ and µ’,φ’). In our µ,φ notation 
this becomes 
 
P(µ, µ' ;φ,φ ' ) = 1+ω1[µµ

' + (1− µ 2 )(1− µ' 2 ) cos(φ −φ' )]                                                            (11) 
 
We now systematically evaluate the three terms on the right hand side of equation (7) on 
the basis of these approximations. The first term is straightforward. 
 

Idµdφ
0

1

∫ = 2π(I o
0

2π

∫ + 1
2 I1)                                                                                                       (12) 

 
The second term takes a bit more work. First evaluate the inside double integral. 
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ωo
4π

P(µ, µ' ;φ,φ '

−1

1

∫
0

2π

∫ )Idµ 'dφ ' =
ω o
4π

{1 +ω1[µµ
' + (1− µ2 )(1 −µ ' 2 )cos(φ −φ' )]}

−1

1

∫
0

2π

∫ (Io + µ
' I1)dµ

'dφ '

=
ω o
2

(1+
−1

1

∫ ω1µµ
' )Io dµ

' +
ω o
2

(1+
−1

1

∫ ω1µµ
' )µ ' I1dµ

' + ...cos(φ − φ' )terms

=
ω o
2
(2Io + 0) +

ω o
2
(0 + 2

3 ω1µ)

=ω oIo + 1
3ω oω 1µI1

=ω o(Io + gµI1)

            (13) 

 
Note here that µ’ is used in the Eddington approximation (i.e., I=Io+µ’I1), that all terms 
involving the cos(φ-φo) integrate out to zero so they can be dropped immediately, and g is 
defined as g=ω1/3.  
 
Now, taking the outside double integrals we have 
 

€ 

[ωo

4π
P(µ,µ' ;φ,φ '

−1

1

∫
0

2π

∫ )Iν dµ'dφ ' ]
0

1

∫
0

2π

∫ dµdφ = ωo(Io + gµI1)
0

1

∫
0

2π

∫ dµdφ

= 2π (ωoIo + 1
2ωogI1)

                                 

(14) 
 
 
For the third term, the integration of the source function (using equation (3)) gives 
 

S
0

1

∫
0

2π

∫ dµdφ = ω o

4
FsP(µ, −µo,φ,φo ) exp(−

τ
µo
)

0

1

∫
0

2π

∫ dµdφ

=
ωo

4
Fs exp(−

τ
µo
) 1 +ω1[−µµo + (1− µ

2 )(1− µo
2 )cos(φ − φo )]

0

1

∫
0

2π

∫ dµdφ

=
ωo

4
Fs exp(−

τ
µo
)[2π − ω1µµo

0

1

∫
0

2π

∫ dµdφ + ....cos(φ − φo )terms]

=
ωo

4
Fs exp(−

τ
µo
)(2π − 2π ω1µ o

2
)

=
ωo
2
πFs exp(−

τ
µo
)(1− ω 1µo

2
)

=
(2 − 3gµo )

4
πFsω o exp(−

τ
µo
)

                          (15) 

 
Note here that we have replaced µ’ with µ0 when using equation (11). 
 
Equation (7) now becomes 
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dF+

dτ
= 2π (Io + µI1 ) +ω o(I o + gµI1) +

(2 − 3gµo )
4

πFs (ν)ωo exp(−
τ
µo
)                                            

(16) 
 
The final step is to write this equation in terms of fluxes. In the Eddington approximation 
the up and down fluxes are 
 

F+ = 2π I
0

1

∫ µdµ = 2π (Io
0

1

∫ + µI1 )µdµ =π (I0 + 2
3 I1)                                                                    (17) 

 
and 
 

F− = 2π I
0

−1

∫ µdµ = 2π (Io
0

−1

∫ + µI1)µdµ = π(I 0 − 2
3 I1)                                                                    (18) 

 
Using these definitions and noting the following additive properties 
 
F+ + F− = 2πIo and F+ − F− = 4

3 πI1                                                                                
(19) 
 
equation (16) can be re-written as 
 
dF+

dτ
= [
7 −ω o(4 + 3g)

4
]F+ + [

1 +ωo (4 − 3g)
4

]F− +
(2 − 3gµo)

4
πFs (ν)ωo exp(−

τ
µo
)                           (20) 

 
Going through a similar procedure for the downward flux, equation (8) can be shown to 
reduce to 
 
dF−

dτ
= −[

1 −ωo (4 − 3g)
4

]F+ − [
7− ωo (4 + 3g)

4
]F− +

(2 + 3gµo)
4

πFs (ν)ωo exp(−
τ
µo
)                         (21) 

 
The Hemispheric Mean Approximation 
 
In the Hemispheric Mean approximation, the intensity is constant in each hemisphere 
such that 
 

€ 

I = I+   ,   µ > 0                                                                                                                  
(22) 
 
and 
 

€ 

I = I−   ,   µ < 0                                                                                                                 (23) 
 
The phase function is symmetric and is approximated as follows: 
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€ 

P(µ,µ' ) = (1+ g),  µµ' > 0   (i.e.,  the  forward  hemisphere)                                          (24) 
 
and 
 

€ 

P(µ,µ' ) = (1− g),  µµ' < 0   (i.e.,  the  backward  hemisphere)                                        (25) 
 
where g is the asymmetry factor. For g = 1 all the radiation is scattered into the forward 
hemisphere; for g=0 the radiation is scattered equally into each hemisphere (isotropic); 
and for g=-1, all the radiation is scattered into the backward hemisphere. 
 
As before, we evaluate each term on the right hand side of equation (7). Again, the first 
term is straightforward. 
 

€ 

Idµdφ
0

1

∫ = 2πI+

0

2π

∫                                                                                                             (26) 

 
The inside double integral of the second term is 
 

€ 

ωo

4π
P(µ,µ';φ,φ '

−1

1

∫
0

2π

∫ )Idµ'dφ ' = ωo

4π
{2π[ (1− g)I−

−1

0

∫ dµ' + (1+ g)I+

0

1

∫ dµ' ]

=
ωo

2
[(1− g)I− + (1+ g)I+]

                           (27) 

 
So that the outside double integrals become 
 
 

€ 

[ωo

4π
P(µ,µ' ;φ,φ '

−1

1

∫
0

2π

∫ )Iν dµ'dφ ' ]
0

1

∫
0

2π

∫ dµdφ =
ωo

2
[(1− g)I− + (1+ g)I+]

0

1

∫
0

2π

∫ dµdφ

= πωo[(1− g)I
− + (1+ g)I+]

                (28) 

 
The thermal infrared source function (the third term) is straightforward. 
 

€ 

Sdµdφ
0

1
∫0

2π
∫ = (1−ωo)Bdµdφ

0

1
∫0

2π
∫

= 2π (1−ωo)B
                                                                             

(29) 
 
Equation (7) for the Hemispheric Mean approximation with an infrared source term now 
becomes 
 

€ 

dF +

dτ
= 2πI+ −πωo[(1− g)I

− + (1+ g)I+]− 2π (1−ωo)B                                                     (30) 
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which can be written in terms of fluxes (

€ 

F + = 2πI+ ) as 
 

€ 

dF +

dτ
= F + −

ωo

2
[(1− g)F − + (1+ g)F +]− 2π (1−ωo)B                                                       (31) 

 
For the downward flux, equation (8) for the hemispheric mean approximation reduces to 
 

€ 

dF −

dτ
= F − +

ωo

2
[(1− g)F − + (1+ g)F +]+ 2π (1−ωo)B                                                       (32) 

 
3. Generalized Solution for a Homogeneous Atmosphere 
 
Notice that equations (20)-(21) and (31)-(32) have a common form. Meador and Weaver 
(1980) showed that all two-stream equations can be written as 
 
dF↑

dτ
= γ1F

↑ − γ 2F
↓ − S↑                                                                                                       (33) 

 
dF↓

dτ
= γ 2F

↑ − γ1F
↓ + S↓                                                                                                       (34) 

 
where the gamma coefficients depend on the type of two-stream approximation 
employed, and the source  terms are 
 

S↑ = γ 3πFsω o exp(−
τ
µo
), and S↓ = γ 4πFsω o exp(−

τ
µo
)                                                             (35) 

for solar radiation, and 
 

€ 

S↑ = S↓ = 2π (1−ωo)B(τ )                                                                                                  (36) 
 
for infrared radiation. 
 
Equations (22) and (23) are a set of coupled linear differential equations that can be 
solved by differentiating each with respect to τ and reordering the terms to arrive at the 
following two equations: 
 

€ 

∂ 2F↑

∂τ 2
− λ2F↑ = −(γ1S

↑ + γ 2S
↓ +

∂S↑

∂τ
)                                                                                  

(37)                                                                                 (26) 

€ 

∂ 2F↓

∂τ 2
− λ2F↓ = −(γ 2S

↑ + γ1S
↓ −

∂S↓

∂τ
)                                                                                 (38) 

 
where 
 

€ 

λ2 ≡ γ1
2 − γ 2

2                                                                                                                      (39) 
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The solution to these equations is (Chris: I can’t quite get this solution. Not sure where Γ 
comes from). 
 

€ 

F↑(τ ) = k1 exp(λτ )+ k2Γexp(−λτ )+C
↑(τ )                                                                      (40) 

 

€ 

F↓(τ) = k1Γexp(λτ ) + k2 exp(−λτ) + C↓(τ )                                                                     (41) 
 
where k1 and k2 are constants determined by the boundary conditions, and 
 

€ 

Γ ≡
γ 2

γ1 + λ
=
γ1 − λ
γ 2

                                                                                                           

(42) 
 
and so it depends on the nature of the two stream approximation. 
 
The first two terms on the right hand side of equations (29) and (30) represent the 
homogenous solution, and the C terms represent the particular solution, which depends 
on the source function. For solar radiation the source terms are given by equation (24) 
and the C terms can be shown to be 
 

€ 

C↑(τ) = πFsωo exp(−
τ
µo

)
[γ 3(γ1 − 1

µo
) + γ 4γ 2]

(λ2 − 1
µo
2 )

                                                                    (43) 

 

€ 

C↓(τ ) = πFsωo exp(−
τ
µo

)
[γ 4 (γ1 + 1

µo
)+γ 3γ2 ]

(λ2 − 1
µo
2 )

                                                                    (44) 

 
For thermal radiation, the source terms are given by equation (25). However, before the C 
terms can be evaluated the dependence of the Planck function on optical depth needs to 
be specified. We assume that the Planck function is linear in τ, or equivalently is 
approximated by the first two terms in a Taylor expansion. Thus, 
 

€ 

B(τ ) = Bo + B1τ                                                                                                                 (45) 
 
where Bo is the Planck function evaluated at the top of the layer (

€ 

τ =0), and B1 is 
approximated as 
 

€ 

B1 =
∂B
∂τ

≅
B(Tbot )− B0

τ*
 

 
 where 

€ 

Tbot is the temperature at the bottom of the layer,nd 

€ 

τ* is the optical depth of the 
layer. This assumption is valid only for small changes in the optical depth.  
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Substituting equation (25) into (26) and (27) and making use of (34), the C terms for a 
thermal source function can be shown to be 
 

€ 

C↑(τ) = 2π (1−ωo

γ1 − γ 2
)[Bo + B1(τ +

1
γ1 + γ 2

)]                                                                        (46) 

 

€ 

C↓(τ) = 2π (1−ωo

γ1 − γ 2
)[Bo + B1(τ −

1
γ1 + γ 2

)]                                                                        (47) 

 
As mentioned above, there are a variety of two stream solutions to the radiative transfer 
equation that depend on the assumptions made about the intensity field and phase 
function. Table 1 gives the approximations made for the two-stream solutions available in 
our code, along with their corresponding coefficients. 
 
Table 1: Two-Stream Parameters. Note that 

€ 

γ 4 =1− γ 3 

Method Intensity 
Field Phase Function γ1 γ2 γ3 

Eddington 

€ 

I = Io + µI1 
 

€ 

P(Θ) =1+ω1 cos(Θ)
 

€ 

7 −ωo(4 + 3g)
4

 

€ 

−[1−ωo(4 − 3g)]
4

 

€ 

2 − 3gµo

4
 

Quadrature 

€ 

I+,µ > 0
I−,µ < 0

 

€ 

P(µ) =1+ 3µ 

€ 

3
2
[2−ωo(1+ g)] 

€ 

3
2
ωo(1− g) 

€ 

1− 3gµo

2
 

Hem. Mean 

€ 

I+,µ > 0
I−,µ < 0

 

€ 

P =1+ g, forward
=1− g,backward

 

€ 

2 −ωo(1+ g) 

€ 

ωo(1− g) 
Not needed 

in IR 
 
We emphasize here that in the infrared, only the hemispheric mean approximation 
conserves energy (see Toon et al., 1989). Thus, we use this exclusively in this wavelength 
regime.  
 
Typical boundary conditions at visible wavelengths have 
 

€ 

F↓(0) = 0

F↑(τ* ) = A[F↓(τ* )+πFo exp(−
τ*
µo

)]
 

 
while in the infrared they are 
 

€ 

F↓(0) = 0
F↑(τ* ) = επBg + (1−ε)F↓(τ* )

 

 
where A is the surface albedo, 

€ 

ε  is the surface emissivity, and 

€ 

Bg is the Planck function 
evaluated at the temperature of the ground. 
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4. Application to Multiple Layers 
 
Equations (29) and (30) can be applied to vertically inhomogeneous atmospheres by 
dividing the atmosphere into N homogenous layers. Application of boundary conditions 
then leads to a matrix equation, which can be inverted to obtain the fluxes. Our code 
follows closely the work of Toon et al (1989) is setting up this matrix. Figure 2 illustrates 
the concept.  
 
Fig. 2. An N layer atmosphere. Note the distinction between level and layer indicies. 
 
Here we define the optical depth in each layer n to range from 0 at the top of the layer, to 
τn at the bottom of the layer. In general, τn varies from layer to layer. The total column 
optical depth at any level n is just the sum of the layer optical depths 
 

€ 

(τ c )n = τ l
l=1

n

∑                                                                                                                     (48) 

 
The two stream solutions for a given layer n can then be written as 
 

€ 

Fn
↑(τ) = k1,n exp(λnτ ) + k2,nΓn exp(−λnτ ) + Cn

↑(τ)                                                              (49) 
 

€ 

Fn
↓(τ) = k1,nΓn exp(λnτ ) + k2,n exp(−λnτ ) + Cn

↓(τ)                                                              (50) 
 
Before proceeding further, note that when ωo=0 (pure absorption) the Γn=0 and equation 
(49) and (50) become decoupled, i.e., they have no common variables.  Physically, the 
upwelling and downwelling streams experience no change of direction due to scattering 
so the fluxes do not depend on each other. This means that any matrix solution will have 
numerical difficulties in this limit. To get around this problem we introduce new 
variables Y1 and Y2 such that 
 

€ 

Y1,n =
k1,n + k2,n

2
                                                                                                                 

(51) 

€ 

Y2,n =
k1,n − k2,n

2
                                                                                                                (52) 

 
Hence, 
 

€ 

k1,n =Y1,n +Y2,n and k2,n =Y1,n −Y2,n                                                                              (53) 
 
and equations (49) and (50) become 
 

€ 

Fn
↑(τ) =Y1,n[exp(λnτ) + Γn exp(−λnτ )]+Y2,n[exp(λnτ ) −Γn exp(−λnτ)]+ Cn

↑(τ )                
(54) 
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€ 

Fn
↓(τ) =Y1,n[Γn exp(λnτ ) + exp(−λnτ )]+Y2,n[Γn exp(λnτ) − exp(−λnτ )]+ Cn

↓(τ)                
(55) 
 
Now, when the Γn=0 the equations remain coupled. 
 
We now proceed to set up the matrix equation. This matrix comes from the boundary 
conditions (see Figure 2).  At the top of the atmosphere we allow for a downward 
diffusive flux (to account for the 3 degree background radiation, say for example). At the 
bottom of the atmosphere the surface can emit thermal radiation and reflect the 
downward flux (visible or infrared). In the interior of the atmosphere we require the 
downward (upward) flux at the bottom of layer n be equal to the downward (upward) flux 
at the top of layer n+1. Mathematically these boundary conditions are 
 

€ 

F1
↓(τ = 0) = F0

↓                                                                                                                  (56) 
 

€ 

Fn
↓(τ = τ n ) = Fn+1

↓ (τ = 0), for n =1,N −1                                                                         
(57)  
 

€ 

Fn
↑(τ = τ n ) = Fn+1

↑ (τ = 0), for n =1,N −1                                                                        (58) 
 

€ 

FN
↑(τ = τ n ) = B*

↑ + Ref *FN
↓(τ = τN )                                                                                 (59) 

 
Application of these leads to 
 

€ 

Y1,1(Γ1 +1) +Y2,1(Γ1 −1) = F0
↓                                                                                              (60) 

 

€ 

Y1,n[Γn exp(λnτ n ) + exp(−λnτ n )]+Y2,n[Γn exp(λnτ n ) − exp(−λnτ n )]+ Cn
↓(τ n ) =

Y1,n+1(Γn+1 +1) +Y2,n+1(Γn+1 −1) + Cn+1
↓ , for n =1,N −1

                (61) 

 

€ 

Y1,n[exp(λnτ n ) + Γn exp(−λnτ n )]+Y2,n[exp(λnτ n ) −Γn exp(−λnτ n )]+ Cn
↑(τ n ) =

Y1,n+1(Γn+1 +1) +Y2,n+1(1−Γn+1) + Cn+1
↑ , for n =1,N −1

                (62) 

 

€ 

Y1,N [exp(λNτN ) + ΓN exp(−λNτN ) +

Y2,N [exp(λNτN ) −ΓN exp(−λNτN )]+ CN
↑ (τN ) =

B*
↑ + Ref *

Y1,N [ΓN exp(λNτN ) + exp(−λNτN )]+
Y2,N [ΓN exp(λNτN ) − exp(−λNτN )]+ CN

↓ (τN )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

                                               (63) 

 
Equations (60)-(63) consist of 2N equations in 2N unknowns (the Y’s or equivalently the 
k’s). They can be rearranged to form a penta-diagonal matrix equation, which can be 
solved using standard matrix inversion techniques. However, if we can tri-diagonalize the 
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matrix we can greatly speed up the solution. Before doing this, lets simplify the notation. 
If we define the following variables: 
 

€ 

e1,n (τ n ) = exp(λnτ n ) + Γn exp(−λnτ n )                                                                               (64) 
 

€ 

e2,n (τ n ) = exp(λnτ n ) −Γn exp(−λnτ n )                                                                               (65) 
 

€ 

e3,n (τ n ) = Γn exp(λnτ n ) + exp(−λnτ n )                                                                                
(66) 
 

€ 

e4,n (τ n ) = Γn exp(λnτ n ) − exp(−λnτ n )                                                                                
(67) 
 
Then equations (61) and (62) become 
 

€ 

Y1,ne3,n (τ n ) +Y2,ne4,n (τ n ) + Cn
↓(τ n ) =Y1,n+1e3,n+1(0) +Y2,n+1e4,n+1(0) + Cn+1

↓ ,
for n =1,N −1

                        (68) 

 

€ 

Y1,ne1,n (τ n ) +Y2,ne2,n (τ n ) + Cn
↑(τ n ) =Y1,n+1e1,n+1(0) +Y2,n+1e2,n+1(0) + Cn+1

↑ ,
for n =1,N −1

                         

(69) 
 
To tridiagonalize the matrix we perform the following operations: 
 

€ 

e4,n+1(0)* Equation(59) − e2,n+1(0)* Equation(58)

and

e3,n+1(τ n ) * Equation(59) − e2,n+1(τ n ) * Equation(58)

 

 
After considerable manipulation, we arrive at the following equations: 
 

€ 

Y1,n [e1,n (τ n ) *e4,n+1(0) − e3,n (τ n ) *e2,n+1(0)] +

Y2,n [e2,n (τ n ) *e4,n+1(0) − e4,n (τ n ) *e2,n+1(0)] +

Y1,n+1[e3,n+1(0) *e2,n+1(0) − e1,n+1(0) *e4,n+1(0)] = e4,n+1(0)[Cn+1
↑ (0) − Cn

↑(τ n )]+
e2,n+1(0)[Cn+1

↓ (τ n ) − Cn+1
↓ (0)]

               

(70) 
 
and 
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€ 

Y2,n [e2,n (τ n ) *e3,n (τ n ) − e4,n (τ n ) * e1,n (τ n )] +

Y1,n+1 [e3,n+1(0) *e1,n (τ n ) − e1,n+1(0) * e3,n (τ n )] +

Y2,n+1 [e4,n+1(0) *e1,n (τ n ) − e2,n+1(0) * e3,n (τ n )] = e3,n (τ n )[Cn+1
↑ (0) −Cn

↑(τ n )]+
e1,n (τ n )[Cn

↓(τ n ) −Cn+1
↓ (0)]

                (71) 

 
 
If we simplify the Y notation by defining new variables such that  
 

 

 
 
 
 
 
Then in general 
 

€ 

Yl =Y1,1,Y1,2,Y1,3,Y1,4 ,....Y1,n for lodd  
 
and 
 

€ 

Yl =Y2,1,Y2,2,Y2,3,Y2,4 ,....Y2,n for leven  
 
Equations (70) and (71) are now are in the tridiagonal matrix form 
 
 

€ 

AYl−1 + BYl + CYl+1 = D                                                                                                    (72) 
 
where for l =2,2N-2,2 (i.e., l even) 
 

€ 

Al = [e1,n (τ n )e4,n (0) − e3,n (τ n )e2,n+1(0)]
= e1,n (Γn+1 −1) − e3,n (1−Γn+1)
= (e1,n + e3,n )(Γn+1 −1)

                                                                             (73) 

 

€ 

Bl = [e2,n (τ n )e4,n+1(0) − e4,n (τ n )e2,n+1(0)]
= e2,n (Γn+1 −1) − e4,n (1−Γn+1)
= (e2,n + e4,n )(Γn+1 −1)

                                                                          (74) 

  

€ 

Y1 ≡ Y1,1
Y2 ≡ Y2,1
Y3 ≡ Y1, 2
Y4 ≡ Y2, 2
Y5 ≡ Y1, 3
Y6 ≡ Y2, 3
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€ 

Cl = [e3,n+1(0)e2,n+1(0) − e1,n+1(0)e4,n+1(0)]
= [(Γn+1 +1)(1−Γn+1) − (1+ Γn+1)(Γn+1 −1)]
= 2(1−Γn+1

2 )
                                                                    (75) 

 

€ 

Dl = e4,n+1(0)[Cn+1
↑ (0) −Cn

↑(τ n )]+ e2,n+1(0)[Cn
↓(τ n ) −Cn+1

↓ (0)]
= (Γn+1 −1)[Cn+1

↑ (0) −Cn
↑(τ n )]+ (1−Γn+1)[Cn

↓(τ n ) −Cn+1
↓ (0)]

                                         (76) 

 
and for l=3,2N-1,2 (i.e., l odd) 
 

€ 

Al = [e2,n (τ n )e3,n (τ n ) − e4,n (τ n )e1,n (τ n )]
= [exp(λnτ n ) −Γn exp(−λnτ n )][Γn exp(λnτ n ) + exp(−λnτ n )]−
[Γn exp(λnτ n ) − exp(−λnτ n )][exp(λnτ n ) + Γn exp(−λnτ n )]

= [Γn exp(2λnτ n ) +1−Γn
2 −Γn exp(−2λnτ n )]−

[Γn exp(2λnτ n ) + Γn
2 −1−Γn exp(−2λnτ n )]

= 2(1−Γn
2)

                                     (77) 

 

€ 

Bl = [e3,n+1(0)e1,n (τ n ) − e1,n+1(0)e3,n (τ n )]
= [(Γn+1 +1)e1,n (τ n ) − (1+ Γn+1)e3,n (τ n )]
= (1+ Γn+1)[e1,n (τ n ) − e3,n (τ n )]

                                                                        (78) 

 

€ 

Cl = e4,n+1(0)e1,n (τ n ) − e2,n+1(0)e3,n (τ n )
= (Γn+1 −1)e1,n (τ n ) − (1−Γn+1)e3,n (τ n )
= [e1,n (τ n ) + e3,n (τ n )](Γn+1 −1)

                                                                           

(79) 
 

€ 

Dl = e3,n (τ n )[Cn+1
↑ (0) −Cn

↑(τ n )]+e1,n (τ n )[Cn
↓(τ n ) −Cn+1

↓ (0)]                                              (80) 
 
For l=1 (the top layer) comparing equation (60) with (72) we see by inspection that 
 

€ 

Al = 0                                                                                                                               (81) 
 

€ 

B1 = Γ1 +1                                                                                                                         
(82) 
 

€ 

C1 = Γ1 −1                                                                                                                         
(83) 
 

€ 

D1 = Fo
↓ −C1

↓(0)                                                                                                                (84) 
 
For l=L (the bottom layer) comparing equation (63) with (72) we can see that 
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€ 

AL = exp(λnτ n ) + Γn exp(−λnτ n ) −Ref[Γn exp(λnτ n ) + exp(−λnτ n )]
= (1−RefΓn )exp(λnτ n ) + (Γn −Ref)exp(−λnτ n )

                                (85) 

 

€ 

BL = exp(λnτ n ) −Γn exp(−λnτ n ) −Ref[Γn exp(λnτ n ) − exp(−λnτ n )]                                 
(86) 
 

€ 

CL = 0                                                                                                                               (87) 
 

€ 

DL = B*
↑ −CN

↑ (τ n ) + RefCN
↓ (τN )                                                                                        

(88) 
 
5. Additional Sophistication: The Delta Approach 
 
Aerosol phase functions generally have a strong forward peak, which is not well captured 
by equation (10). Replacing this phase function with the sum of a delta function in the 
forward direction and a less sharply peaked remainder in the backward direction leads to 
higher accuracy in the 2-stream approximation. Thus, 
 

€ 

Pδ (cosΘ) ≅ 2 fδ(1− cosΘ) + (1− f )(1+ 3g' cosΘ)                                                          (89) 
 
where f is the fraction of scattering in the forward peak, 

€ 

(1+ 3g' cosΘ) are the first two 
terms of a Legendre polynomial expansion, and 

€ 

g' is a scaled asymmetry factor 
determined from the definition of g (i.e., 

€ 

g = cosΘdΘ∫  ). Hence, we have 
 

€ 

g' = (g − f )
(1− f )

                                                                                                                   (90) 

 
By requiring the 2nd moment of 

€ 

Pδ  to be equal to that of the real phase function, which 
we approximate by a Henyey-Greenstein phase function, we have

€ 

f = g2and hence 
 

€ 

g' = g
1+ g

                                                                                                                      (91) 

 
We also need to scale the single scattering albedo and optical depth to account for the 
loss of the forward peak. Thus, 
 

€ 

ωo
' =
(1− g2)ωo

1−ωog
2                                                                                                             (92) 

 

€ 

τ ' = (1−ωog
2)τ                                                                                                             (93) 


